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ABSTRACT

Meta-analytic studies suggest that dyslexia is characterized by subtle and spatially distributed variations in brain
anatomy, although many variations failed to be significant after corrections of multiple comparisons. To circum-
vent issues of significance which are characteristic for conventional analysis techniques, and to provide predictive
value, we applied a machine learning technique - support vector machine - to differentiate between subjects
with and without dyslexia.
In a sample of 22 students with dyslexia (20 women) and 27 students without dyslexia (25 women) (18-
21 years), a classification performance of 80% (p < 0.001; d-prime = 1.67) was achieved on the basis of differ-
ences in gray matter (sensitivity 82%, specificity 78%). The voxels that were most reliable for classification
were found in the left occipital fusiform gyrus (LOFG), in the right occipital fusiform gyrus (ROFG), and in the
left inferior parietal lobule (LIPL). Additionally, we found that classification certainty (e.g. the percentage of
times a subject was correctly classified) correlated with severity of dyslexia (r = 0.47). Furthermore, various sig-
nificant correlations were found between the three anatomical regions and behavioural measures of spelling,
phonology and whole-word-reading. No correlations were found with behavioural measures of short-term
memory and visual/attentional confusion. These data indicate that the LOFG, ROFG and the LIPL are neuro-
endophenotype and potentially biomarkers for types of dyslexia related to reading, spelling and phonology.
In a second and independent sample of 876 young adults of a general population, the trained classifier of the first
sample was tested, resulting in a classification performance of 59% (p = 0.07; d-prime = 0.65). This decline in
classification performance resulted from a large percentage of false alarms. This study provided support for the
use of machine learning in anatomical brain imaging.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

adulthood for most of the dyslexics which are estimated to represent
5% to 15% of the population.

Dyslexia is usually defined as a specific reading disorder character-
ized by a specific and significant impairment in the development of
reading skills that are unrelated to problems with visual acuity, school-
ing or overall mental development (World Health Organisation, 2010).
For (sub-) groups of dyslexics, reading difficulties have been related to
various symptoms of which the most frequently reported are related
to phonological difficulties although, in recent years, visual/attentional
deficits are reported frequently as well (e.g. Ramus and Ahissar,
2012). Generally, it is assumed that early learning delays cannot be
overcome completely despite remedial teaching programs, and that
these learning delays interfere with academic achievement into

Abbreviations: SVM, support vector machine; VBM, voxel-based morphometry; GM,
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Reliable diagnoses can currently only be determined behaviourally
and after some years of education, when the discrepancy between nor-
mal cognitive and reading abilities becomes visible. Alternatively, re-
searchers have been searching for biomarkers of dyslexia using MRI or
fMRI. Meta-analyses showed that these differences do exist (Richlan
et al., 2011, 2012; Vandermosten et al., 2012), although many findings
failed to be significant after corrections of multiple comparisons.

A potentially more powerful technique than the univariate voxel-
wise evaluation and correction of multiple comparisons are multivariate
classification techniques from machine learning. This technique has
recently successfully been applied in several clinical neuroimaging stud-
ies. For instance, a high accuracy rate of 90% has been reported for dis-
criminating major depressive disorder and controls (Mwangi et al.,
2012). An accuracy rate of 81% has been found for autism (Ecker et al.,
2010).

Also with regard to dyslexia, this classification approach has been ap-
plied. In a study of Hoeft et al. (2011), a multivariate pattern analysis of
brain activation during a reading task over the whole brain using linear

2213-1582/© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


http://crossmark.crossref.org/dialog/?doi=10.1016/j.nicl.2016.03.014&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.nicl.2016.03.014
mailto:H.S.Scholte@uva.nl
http://dx.doi.org/10.1016/j.nicl.2016.03.014
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/22131582
www.elsevier.com/locate/ynicl

P. Tamboer et al. / Neurolmage: Clinical 11 (2016) 508-514 509

support vector machine and cross-validation, showed that reading gains
over a 2.5 year period in children with dyslexia can be predicted with
>90% classification accuracy. A study of Tanaka et al. (2011) showed
that in two samples of typical and poor reading children 79% and 80%
were classified correctly using leave-one-out linear SVM analyses of
brain activation during phonological processing. In a study of Pernet
et al. (2009), classification of dyslexic readers brains resulted in dyslexics
falling outside the 95% confidence boundaries of the controls in two areas
(the right cerebellar declive and the right lentiform nucleus).

The aim of this study is to investigate whether young adults with and
without dyslexia can reliably be classified based on anatomical differ-
ences. We examined neuro-anatomical networks involved in dyslexia
using a whole-brain classification employing SVM and cross-
validation. We used the T;-weighted magnetic resonance images of
GM structure of a sample of 22 students with dyslexia and 27 students
without dyslexia for acquiring a trained classifier. Next, we determined
which voxels were involved with the correct classification. Further-
more, we explored to what degree these results can be used to investi-
gate the relation between different cognitive aspects of dyslexia and
neural substrates. We also tested the reliability of the trained classifier
in an independent sample of 876 young adults.

2. Materials and methods
2.1. Subjects & procedure

The first sample - used to find a trained classifier - consisted of 22
students with dyslexia (20 women; 4 left-handed; mean age
20.7 years, SD 1.8 years) and 27 students without dyslexia (25
women; 4 left-handed; mean age 20.3 years, SD 0.9 years). All partici-
pating subjects were first-year psychology students, native Dutch
speakers, had at least twelve years of school education, were free from
medical or psychiatric diseases and had no history of sensory deficits
or head trauma. None of the participants had a diagnosis of ADHD.
Handedness was assessed with a short self-report questionnaire,
which included questions about writing hand, general hand preference,
as well as 20 specific questions. There were no students with inconsis-
tent reports which could indicate being ambidextrous.

The 49 students of the first sample were invited to participate in the
present study by mail and telephone. The students gave informed
written consent and were debriefed afterwards. All participants had
the option to choose between acquiring participation points required
for the first year of study, or a financial reward. This study was approved
by the ethics committee at the University of Amsterdam.

The second sample - used to test the trained classifier - consisted of
young adults of a general population. Brain data of this sample were
available for various studies at the University of Amsterdam. We exclud-
ed participants with a serious medical condition, with a diagnosis of
autism spectrum disorder and participants using psychiatric drugs or
psychiatric medicine. The remaining sample consisted of 876 subjects
who were native Dutch speakers and who had at least twelve years of
school education. Of this sample, 60 (7%) subjects (27 women; mean
age 22.5 years, SD 1.6 years) were diagnosed with dyslexia whilst at-
tending school, and 816 subjects (433 women; mean age 22.9 years,
SD 1.7 years) had no reported history of dyslexia.

2.2. Neuropsychological Assessment

The first sample was acquired from a sample of 480 students who
participated in a previous study (Tamboer et al., 2014a). In that study,
dyslexia and non-dyslexia was assessed using three sources of informa-
tion: (1) a history of language difficulties, (2) a self-report of language
difficulties, and (3) a test-battery measuring numerous abilities such
as spelling, reading, pseudoword reading, phonology, attention, and
short-term memory. Severity of dyslexia was determined with a regres-
sion formula which consisted of 13 test items and 10 self-report

questions, and which classified all subjects with and without dyslexia
correctly. In a follow-up study (Tamboer et al., 2014b), five behavioural
factors accompanying dyslexia were determined using exploratory and
confirmatory factor analyses. On the basis of these analyses we acquired
five Z-transformed sum scores: spelling, phonology, short-term memo-
ry, visual/attentional confusion, and whole-word reading.

We assumed that intelligence of all participants was within the nor-
mal range because all had finished the highest level of secondary school
education in the Netherlands. Group differences of intelligence were
analysed as follows. In the original sample of 480 students, we per-
formed factor analyses over six subtests of a cognitive battery that
was based on the Structure of Intellect Model of Guilford and Raven Pro-
gressive Matrices for a better interpretation of various aspects of intelli-
gence. Three factors (non-verbal intelligence, speed of numeric
processing, vocabulary) were extracted and factor scores were acquired
with a mean of zero and standard deviation of one. The smaller sample
of the present study shows small deviations from the mean and SD of 1
because this was a selection of the original sample. In the present sam-
ple, the groups did not differ on the three aspects of general intelligence.
Furthermore, no differences were found on school grades of English lan-
guage, mathematics, and other courses. However, the dyslexic group
had compared to the non-dyslexic group lower final school grades
of Dutch language and other languages such as French or German. We
conclude that the groups did not differ in terms of general intelligence.
Specific details can be found under Supplementary Information.

The data of the second sample were collected to be used in various
studies regarding brain correlates accompanying various developmen-
tal disorders. The subjects of this sample were not tested for dyslexia,
because the present study was performed after the collection of data.
Available was a large self-report questionnaire which included two
questions about dyslexia. One question was whether the subjects had
an official certificate of dyslexia and a second question was whether a
subject was tested for dyslexia whilst attending school.

2.3. Image acquisition and preprocessing

For both samples, we used the standard population acquisition pro-
tocol of the Spinoza Centre for Neurolmaging in Amsterdam. We ac-
quired three 3DT1 whole-brain scans for each subject (3D T1, Turbo
Field Echo sequences, voxel size =1 mm?, FOV = 256”2 mm, 160 slices,
FA = 8°, TE = 3.81 ms, TR = 8.24 ms), using a 3 T Philips Achieva scan-
ner with a 32 channel headcoil. Each sequence lasted approximately
6 min to acquire. The three T1 scans were aligned to the 2nd recorded
T1 scan and subsequently averaged. Each averaged brain was manually
inspected and subsequently placed in a common space using VBM
(Good et al., 2001) as implemented in FSL (Smith et al., 2004).

First, structural images were brain-extracted. Next, tissue-type seg-
mentation was carried out using FAST4 (Zhang et al., 2001). The
resulting GM partial volume images were then aligned to MNI152 stan-
dard space using the affine registration. The resulting images were aver-
aged to create a study-specific template, to which the original GM
images were then non-linearly re-registered with a method that uses
a B-spline representation of the registration warp field (Rueckert et al.,
1999). The registered partial volume images were then modulated (to
correct for local expansion or contraction) by dividing by the Jacobian
of the warp field. The modulated segmented images were then
smoothed with an isotropic Gaussian kernel with a kernel of 4 mm.

24. Pattern classification

We used SVM to train a classifier to distinguish between
subjects with and without dyslexia of the first sample (http://
www.csie.ntu.edu.tw/~cjlin/libsvm/). The SVM classifier was trained
on using 21 randomly selected subjects with dyslexia (of 22) and 21
randomly selected subjects without dyslexia (of 27). The voxels used
during the training stage were determined by subtracting the average
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VBM transformed brain of the selected controls from the average VBM
transformed brain of the dyslexia group and z-transforming the
resulting difference image. Next, we estimated the linear hyperplane
that maximally separates the subjects with and without dyslexia using
those voxels that surpassed a z-threshold of 3, 3.5, 4 and 4.5. We used
the default values for training a linear classifier, one-class classifier.
This procedure yielded four classifiers which performance was evaluat-
ed using the one remaining dyslexic subject and one of the (randomly
selected) six controls and we repeated this procedure 10,000 times.
Thus, we applied a cross-validation procedure in which each subject
was classified many times on the basis of a hyperplane acquired with
21 subjects with and 21 subjects without dyslexia. The z-threshold of
4 and 4.5 yielded the highest classification performance and we subse-
quently also tested a threshold value of 4.25. This z-value controls
how many voxels are used for classification and resulted in these condi-
tions into a value of 759 voxels. The procedure using the z-threshold of
4.25 yielded the highest classification performance and only these re-
sults were used for subsequent analysis. This result yielded many classi-
fications of each subject as either dyslexic or control that could either be
correct or incorrect. See Fig. 1 for the classification scheme.

2.5. Analyses

For each subject, group membership was determined by the major-
ity of hits or misses. Thus, when the proportion of hits for a particular
subject was 0.5, the subject was considered correctly classified. This
also yielded, per subject, a continuous score representing the classifica-
tion accuracy for each subject. The prediction accuracy of the trained
classifier was estimated with the proportion of correctly classified sub-
jects. We quantified the estimated sensitivity with the proportion of
correctly classified subjects with dyslexia, and the estimated specificity
with the proportion correctly classified subjects without dyslexia. We
calculated d-prime with Z (proportion hits) - Z (proportion false
alarms).

In a second analysis, we repeated the classification procedure de-
scribed in the previous paragraph but using 20% of the selected voxels
per iteration. For each voxel, we subsequently scored the percentage
of times a classification was successful for that drawing of voxels. This
yielded after 100,000 iterations, for each voxel, a count for the number
of times that a voxel was selected and the number of times that this se-
lection resulted in a correct classification. In this way we expressed the
importance of a voxel for classifying dyslexia.

Next, we examined the relation between brain regions of the voxels
that were most reliable for classification and the behavioural measures
(spelling, phonology, short-term memory, whole-word reading and vi-
sual/attentional confusion) with bivariate Pearson correlations. We also
calculated the Pearson correlation between the classification accuracy
for each subject and severity of dyslexia.

In the second sample, group membership of each subject was deter-
mined by the trained classifier which was acquired with the first

Preprocessing Training
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Segmentation of GM S\{M
Template Generation Feature
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For each cycle: select
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sample. The accuracy of the trained classifier in this sample was esti-
mated with the proportion of correctly classified subjects. We quanti-
fied the estimated sensitivity with the proportion of correctly
classified subjects with dyslexia, and the estimated specificity with the
proportion correctly classified subjects without dyslexia. We calculated
d-prime with Z (proportion hits) - Z (proportion false alarms).

3. Results
3.1. Classification of subjects with and without dyslexia (first sample)

The SVM technique resulted in a total prediction accuracy of 39 /
49 = 80%. Permutation testing, in which we repeated this entire proce-
dure but now with permuted labels, revealed that in 1000 simulations
this level of accuracy was never reached yielding a significance of
p < 0.001. Furthermore, we found a sensitivity (proportion correctly
classified subjects with dyslexia) of 18 / 22 = 82%, and a specificity
(proportion correctly classified subjects without dyslexia) of 21 /
27 = 78%. We found that d-prime = 1.67. See Table 1. Positive predic-
tive value (proportion of all subjects classified as dyslexic who have in
fact dyslexia) was 75% and negative predictive value (proportion of all
subjects classified as not dyslexic who have in fact no dyslexia) was 84%.

3.2. Mean classification accuracy (first sample)

For each subject separately, the accuracy of the prediction was calcu-
lated with the proportion hits or - for subjects incorrectly classified -
misses. This resulted in a continuous score representing the classifica-
tion accuracy for each subject, ranging from 0.51 to 1.00. In the whole
sample the mean of this classification accuracy was 0.89. We also calcu-
lated the mean classification accuracy for four subgroups. The correctly
classified dyslexics had a mean classification accuracy of 0.87 (SD 0.13).
The false negatives had a mean classification accuracy of 0.87 (SD 0.15).
The correctly classified non-dyslexics had a mean classification accuracy
0f 0.90 (SD 0.16). The false positives had a mean classification accuracy
of 0.94 (SD 0.12). One conclusion was that the correctly predicted sub-
jects were correctly classified in a large majority of trials. A second con-
clusion was that the false negatives and the false positives were
correctly classified as being false negatives and false positives in a
large majority of trials as well. In other words, the subjects who were in-
correctly classified were consistently incorrectly classified in a large ma-
jority of trials, while more inconsistency over trials could have been
expected. Simple explanations can be ruled out because we found that
left-handedness, gender, and age had no influence on prediction accura-
cy. We also found no differences on factors of intelligence, school
grades, factors of dyslexia, and severity of dyslexia between the groups
of correctly and incorrectly classified subjects with dyslexia and be-
tween the groups of correctly and incorrectly classified subjects without
dyslexia.

Testing

Classify test set

Aggregate classification
accuracy per subject

If dys class > 0.5 - Dys
Else - Non-Dys

Fig. 1. Classification scheme.
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Table 1
Classification of subjects with and without dyslexia.

Sample 1 (N = 49) Predicted as

Dyslexic Not dyslexic
Subjects with dyslexia 18 4
Subjects without dyslexia 6 21
Prediction accuracy 80% (p < 0.001)
d-Prime 1.67
Sensitivity 82%
Specificity 78%
Positive predictive value 75%
Negative predictive value 84%
Sample 2 (N = 876) Predicted as
Dyslexic Not dyslexic
(43%) (57%)
Subjects with dyslexia (7%) 40 20
Subjects without dyslexia (93%) 338 478
Prediction accuracy 59% (p = 0.07)
d-Prime 0.65
Sensitivity 67%
Specificity 59%
Positive predictive value 11%
Negative predictive value 96%

3.3. Anatomical classifier (first sample)

Fig. 2 shows three brain regions of GM (averaged between trials),
which discriminated between subjects with and without dyslexia. One
cluster of reduced GM volume for subjects with dyslexia was found in
the LIPL (65 voxels; —53, — 28, 24). Two clusters of augmented GM
volume for subjects with dyslexia were found bilateral in the LOFG
(150 voxels; —35, —72, —21), and in the ROFG (187 voxels; 35,
—67, —19). Table 2 presents the coordinates of the clusters and the di-
rection of the differences between the groups of subjects with and with-
out dyslexia on GM volume of the three clusters. These differences are
statistically not relevant, but evaluate the relative contribution of the
separate regions to the overall classification of subjects with and with-
out dyslexia.

3.4. Correlation MCA - severity of dyslexia (first sample)

We linearly transformed the mean classification accuracy of each
subject to a continuous score that represented severity of dyslexia
according to the classifier, ranging from 0 (no dyslexia) to 1 (severe
dyslexia). This score was correlated with a behavioural representation
of severity of dyslexia (e.g. a regression score). We found a correlation
of r = 047 (p = 0.0007).

3.5. Correlations between GM indices and symptoms of dyslexia (first sample)

Table 3 summarizes correlations between GM volumes of the three
clusters with measures and severity of dyslexia. There are four main
findings. First, severity of dyslexia correlates significantly with GM
volume in the ROFG and LOFG, meaning that dyslexics have higher
GM volume in those areas. Second, spelling (good performance) corre-
lates significantly negative with GM volume in the LOFG and significant-
ly positive with GM volume in the LIPL. Third, whole-word-reading
(good performance) correlates significantly negative with GM volume
in the LOFG. Fourth, phonology (good performance) correlates signifi-
cantly positive with GM volume in the LIPL. No significant correlations
were found for short-term memory and visual/attentional confusion.
Scatter plots of the significant correlations are presented in Supplemen-
tary Information.

3.6. Classification of subjects of the second sample

The anatomical classifier of the first sample resulted in a total predic-
tion accuracy of 59% in the second sample. Permutation testing, in
which we shuffled the labels from Sample 1, revealed that the classifica-
tion is lower than the observed 59% in 93% of the cases yielding a signif-
icance of p = 0.07. Furthermore, we found sensitivity (proportion
correctly classified subjects with dyslexia) of 67%, and specificity
(proportion correctly classified subjects without dyslexia) of 59%. We
found that d-prime = 0.65. See Table 1. In this sample, dyslexia was
overpredicted with a total number of predicted subjects with dyslexia
of 43%. Positive predictive value (proportion of all subjects classified
as dyslexic who have in fact dyslexia) was 11% and negative predictive
value (proportion of all subjects classified as not dyslexic who have in
fact no dyslexia) was 96%. We also found that total prediction accuracy
did not improve when selecting the same age range as in the first
sample. Neither did the prediction accuracy improve after selecting
only males or females. In both cases, prediction accuracy was 60%.

4. Discussion
4.1. Overview of main results

With SVM, a trained anatomical classifier correctly classified 80% of
students with and without dyslexia (82% of students with dyslexia;
78% of students without dyslexia; d-prime = 1.67). Regions that were
important in discriminating between these groups were the LOFG and
the ROFG and the LIPL. Severity of dyslexia was defined with mean clas-
sification accuracy and correlated positively with severity of dyslexia ac-
cording to behavioural measures (r = 0.47). We found six significant
correlations between the three regions and behavioural measures of
dyslexia. In an independent sample of a general population, the

Fig. 2. Regions with voxels involved in discriminating between subjects with and without dyslexia. Post hoc analysis revealed that the region in blue (LIPL) is smaller in subjects with
dyslexia and that the regions in red (LOFG and ROFG) are larger in subjects with dyslexia. (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)
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Table 2
GM regions discriminating between subjects with and without dyslexia.

Anatomical region MNI-coordinates (X, y, z) Cluster size (mm?) N voxels Direction of effect

Left occipital fusiform gyrus (visual word form area) —35 —72 —-21 1200 150 Dyslexic > control (p = 0.02)
Right occipital fusiform gyrus 35 —67 —19 1496 187 Dyslexic > control (p = 0.01)
Left inferior parietal lobule —53 —28 520 65 Control > dyslexic (p = 0.21)

anatomical trainer of the first sample correctly classified 59% of young
adults with and without dyslexia (67% of students with dyslexia; 59%
of students without dyslexia; d-prime = 0.65).

4.2. Evaluation of prediction accuracy

In a well-balanced sample of students with and without dyslexia, a
majority was correctly classified using SVM. In a general population
sample, the trained classifier of the first sample resulted in a much
lower classification performance, but still above chance. The advantage
of using this classification approach over traditional analyses of group
differences is that discussions about statistical corrections for multiple
comparisons are not relevant. The statistical significance of prediction
accuracy of the anatomical classifier was supported by a cross-
validation approach and by a low p-value (<0.001). The reliability of
the classifier was supported by the finding that on average, subjects
were classified with high consistency between trials, which was
expressed by a mean classification accuracy of 0.89. The validity of the
classifier was supported by the finding that this mean classification ac-
curacy correlated positively with a measure of behavioural severity of
dyslexia. The reliability of the anatomical classifier was further con-
firmed in a second sample, although prediction accuracy and calculated
d-prime were much lower in the second sample than in the first sample.
This decline resulted mainly from many false alarms.

From a diagnostic point of view, predictive values are useful mea-
sures. These measures are, however, sample specific. In the first sample,
positive and negative predictive value are high but meaningless because
the equal groups of the first sample do not represent reality with a prev-
alence of dyslexia of 5-15%. However, we still can draw meaningful con-
clusions. We can imagine a sample with a more representative fraction
of students with dyslexia, for instance, with the number of students
without dyslexia being ten times higher than the 27 students in the
first sample. Classification performance would then approach specifici-
ty, which is 78%, only 2% below the overall classification performance of
80%. However, positive and negative predictive value would change.
Negative predictive value would then be 98%, meaning that a prediction
of no dyslexia by the classifier is in most cases correct. In contrast, pos-
itive predictive value would be 23%, meaning that in about one of four
cases a prediction of dyslexia is correct, but incorrect in three out of
four cases. How to explain this large number of false alarms? Analyses
of mean classification accuracy revealed that not only the correctly clas-
sified students but also false positives and false negatives were

Table 3
Sample 1: Pearson correlations (whole group: N = 49) of brain indices with measures and
severity of dyslexia (severity of dyslexia — low score).

Right occipital  Left occipital Left inferior
fusiform gyrus  fusiform gyrus  parietal lobule
Spelling —0.267 —0311 0.322
(p = 0.029) (p = 0.024)
Phonology —0.242 —0.134 0.301
(p = 0.036)
Short-term memory —0.177 —0.215 0.222
Visual/attentional confusion =~ —0.152 —0.137 0.128
Whole-word reading —0.239 —0.318 0.208
(p = 0.026)
Severity of dyslexia —0.377 —0.337 0.224
(p = 0.008) (p = 0.018)

Bold values indicate significance at p < 0.05.

consistently classified by the trainer in most of the cases (90%). Appar-
ently, the anatomical features represented by the classifier may repre-
sent something else than dyslexia in some of the cases.

In the second sample, which represented a general population, we
found a much lower classification performance of 59%. Although nega-
tive predictive value was high (96%), meaning that most people who
are classified as not dyslexic are indeed not dyslexic, positive predictive
value was very low (11%), also lower than in the first sample. This re-
sulted from a high percentage false alarms of 43%, much higher than es-
timations of prevalence of 5-15%. Before drawing conclusions about the
generalizability of the trained classifier, we should discuss three issues.

First, the first sample was small and consisted of equal groups with
subjects only being selected when having dyslexia or no dyslexia beyond
any reasonable doubt, while the second sample was large and represented
a general population. Generally, it is widely accepted that subtypes of dys-
lexia can be distinguished (e.g. Ramus and Ahissar, 2012). Although we
found that the students with dyslexia in the first sample can be character-
ized by five different impairments, we cannot exclude the possibility that
in such a small sample of a specific subpopulation (first-year college stu-
dents) one or more cognitive aspects of dyslexia are over- or underrepre-
sented as compared to a general population. If either of these possibilities
would have been the case, the trained classifier was trained on a subgroup
of people with dyslexia. This might have compromised classifications in
both samples. For instance, specific subtypes of dyslexia may be character-
ized by specific compensation strategies with specific anatomical conse-
quences. It cannot be ruled out that also students without dyslexia are
characterized by the same anatomical consequences because their training
histories during school days resemble those of students with dyslexia.

A second issue is the criterion of dyslexia in the second sample. This
criterion was established based on diagnoses during school days by spe-
cialists. But these records were not specified and were uncontrollable.
Based on this criterion, we found a prevalence of dyslexia of seven per-
cent, which may be too low. It can be assumed that some students with-
out records of dyslexia still have dyslexia, while some students with an
official certificate of dyslexia have no dyslexia. Although it cannot ex-
plain the large number of false alarms, overall classification perfor-
mance could have been better with better criterion groups.

A third issue is that the two samples were different regarding intel-
ligence, socio-economical status, or other characteristics. One clear dif-
ference between students of a university and other young people is
that students have received more training than other young people in
all kinds of language-related and other cognitive abilities. And in the
Netherlands, school children with dyslexia usually receive additional re-
medial teaching. When we hypothesize that the anatomical differences
of the anatomical trainer in this study partly result from training effects,
it might be explained why the number of false alarms in the second
sample was larger than in the first sample. Subjects without dyslexia,
but with low socio-economical status or low intelligence, may have re-
ceived additional training as well, resulting in a diagnosis of dyslexia in
this study. The hypothesis that the anatomical trainer in this study re-
sults from training differences is supported by various studies showing
effects of training on anatomical alterations in dyslexia (e.g. Hoeft et al.,
2011; Krafnick et al., 2011). Two studies report that many GM volume
differences between dyslexics and controls in general result from differ-
ences in reading experience (Clark et al., 2014; Krafnick et al., 2014).

In short, the classifier found in the first sample performed above
chance in the second sample. This underlines its reliability and justifies
its further theoretical examination of the areas that contributed to this
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classifier. However, we conclude that the trained classifier based on an-
atomical scans of students of this study cannot be used for clinical pur-
poses. Although negative predictive values were high in both samples,
positive predictive values were low in both samples. This means that
many people without dyslexia would be labelled with dyslexia.

4.3. Anatomical classifier

While the usefulness of a trained classifier based on anatomical
scans for clinical purposes requires further examination in future stud-
ies, the nature of the classifier in this study provides useful information
as compared to previous results of brain imaging studies. In the present
study, brain regions that contributed to the classification were found in
the LIPL, the LOFG and ROFG. These results are in line with converging
evidence of involvement of these areas in dyslexia. For instance, in the
classification study of Tanaka et al. (2011), poor reading children exhib-
ited significantly reduced activations in the LIPL and the LOFG during
phonological processing. We will discuss the areas of the present
study one by one.

In the present study, GM volume in the LIPL correlated positively
with performances of spelling and phonology, which is consistent
with various previous findings. Reduced GM volume in the LIPL has
been reported in pre-reading children with a family-history of develop-
mental dyslexia (Raschle et al., 2011). These researchers suggested that
some structural alterations in developmental dyslexia may be present at
birth or develop in early childhood prior to reading onset. They also
found a significant positive correlation between this area and a rapid
automized naming test, which is assumed to be related to phonological
skills (Vaessen et al., 2009; Vaessen and Blomert, 2010) and which is re-
ported to be one of the main precursors of later reading ability in chil-
dren (e.g. De Jong and Van der Leij, 1999). These results suggest that
some anatomical differences related to phonology in the LIPL may be
present already at birth. Furthermore, the LIPL has been reported in
functional brain imaging studies that showed that multiple specializa-
tions along the visual word-form system were found to be impaired in
dyslexics (Van der Mark et al., 2011), which is consistent with the re-
duced activations found in the study of Tanaka et al. (2011).

While in the present study dyslexics exhibited less GM volume in the
LIPL, they exhibited more GM volume in the LOFG and ROFG. And al-
though GM volume in both areas correlated (negatively) with severity
of dyslexia, only the LOFG correlated with behavioural measures: nega-
tively with whole-word reading and negatively with spelling (in con-
trast to the positive correlation found between the area in the LIPL
and spelling). These negative correlations are remarkable: better perfor-
mances on whole-word reading and spelling are accompanied by re-
duced GM volume. Maybe this should be interpreted as the result of
training effects with poor performances leading to more training and
thus to augmented GM volume. Interesting here is also the finding
that poor reading children exhibited reduced activations in the LOFG
during phonological processing (Tanaka et al., 2011), while no signifi-
cant correlation was found between this area and phonology in the
present study.

Clearly, the relation between GM volume and functionality in the
LOFG is hard to understand. However, it is also clear that the LOFG is
an important area in dyslexia. In previous studies, support was found
for the involvement of the LOFG in dyslexia, but mainly in the VWFA.
In the present study, the area in the LOFG is located close to where the
VWEFA is usually reported, although we were not able to establish
whether this area is actually the VWFA. Nevertheless, the correlations
between the LOFG and spelling and whole-word reading are consistent
with previous findings related to the VWFA. For instance, various stud-
ies reveal that the VWFA plays an important role in early stages of
whole-word recognition and serial sublexical coding of letter strings
(Dehaene and Cohen, 2011; Glezer et al., 2010; Schurz et al., 2010). Fur-
thermore, lesions in the VWFA cause pure alexia, a selective deficit in
word recognition characterized by a disproportionate prolongation of

reading time as a function of word length (Pflugshaupt et al., 2009). Pos-
sible training effects are supported by showing that the category-
selective nature of the VWFA for visually presented words is dependent
of experience with specific orthographies (Baker et al., 2007).

4.4. Anatomy and functionality

Although the brain areas found in this study can be related to previ-
ous findings, interpretations are hard to make. In general, dyslexics are
found to have less GM volume in various areas, but some studies report
more GM volume in some areas (Silani et al., 2005; Vinckenbosch et al.,
2005). Likewise, reduced as well as augmented activations have been
reported in the literature (e.g. Richlan et al,, 2011). Some cognitive as-
pects of dyslexia that are typically impaired in people with dyslexia
(e.g. phonological awareness, visual/attentional processing) correlate
and others do not correlate with brain volume or activation.

In this study, we found a relationship between three behavioural
measures of dyslexia (spelling, phonology and whole-word reading)
and brain anatomy but no correlations for short-term memory and visu-
al/attentional confusion, confirming results of previous studies showing
that different symptoms of dyslexia exist at different levels of brain or-
ganisation. A complicating factor is that anatomical and functional dif-
ferences may change in the course of a lifetime as the result of
differences in training. Another complicating factor is that subgroups
of dyslexia exist that suffer from different types of symptoms (e.g.
Bosse et al., 2007), which may be related to differences between lan-
guages, differences in socioeconomic status, differences in intelligence
or differences in schooling.

For example, previous studies have shown that some aspects of dys-
lexia appear to be genetically induced (e.g. Carrion-Castillo et al., 2013),
while other aspects are related to the development of cognitive abilities
and training effects in general (e.g. Clark et al.,, 2014; Hoeft et al,, 2011;
Krafnick et al., 2011, 2014). This might result in puzzling findings such
as those in the classification study of Pernet et al. (2009). It was found
that voxels in the right cerebellar declive and in the right lentiform nu-
cleus classified subjects with and without dyslexia correctly. Remark-
ably, regarding the cerebellar declive two subtypes of dyslexics could
be distinguished: one subtype having more GM volume than controls,
and one subtype having less GM volume than controls. After behaviour-
al analyses, the researchers found that these brain phenotypes relate to
different deficits of automatization of language-based processes. Thus, it
even may be the case that different subgroups of people with dyslexia
are characterized by different training histories, either induced by addi-
tional training programs or by compensation strategies.

Even more complicating for the interpretation of the relation be-
tween brain measures and behavioural measures of dyslexia is that
we found both positive and negative correlations between behavioural
measures and the brain. For instance, good spelling performances corre-
lated positively with GM volume in the LIPL, but negatively with GM
volume in the LOFG. In general, it is hard to interpret the difference be-
tween positive and negative correlations because the relation between
brain anatomy and functionality remains unclear. The negative correla-
tions in our study may point to effects of more training of people with
dyslexia in comparison with people without dyslexia. Especially in our
student sample, it might be expected that the students with dyslexia
were encouraged to participate in remedial teaching programs during
childhood, because dyslexia tends to be more disturbing when the dis-
crepancy with intelligence is high. Support for this view can be found in
arecent study in which fMRI was used to investigate the extent of ana-
tomical overlap between three neural systems which are associated
with dyslexia in the literature: the auditory phonological, the visual
magnocellular and the motor/cerebellar systems (Danelli et al., 2013).
Various areas of conjunction were found in the occipito-temporal cortex
at more or less the same locations as our two areas in the LOFG and
ROFG.
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In short, we found that both augmented and reduced GM volumes
contribute to an anatomical classifier. Possibly, reduced GM volume in
the LIPL may be caused by genetic influences while augmented GM vol-
ume is related to training effects which differ between students with
and without dyslexia, but also between various subtypes of students
with dyslexia and between students without dyslexia who are charac-
terized by different training histories. We also found both positive and
negative correlations between these areas and behavioural measures.
The sample that was used for creating the classifier consisted of well-
educated students which might have influenced the classifier with re-
gard to training effects. It is unknown to what extent all subgroups of
dyslexia were represented by the classifier in a balanced way. Neverthe-
less, the areas that contributed to the classifier are consistent with var-
ious findings from previous studies. Observations made in this and
other studies not only show that different aspects of dyslexia exist at dif-
ferent levels of neural organisation but also that dyslexia is not a unified
phenomenon. Dyslexia results from an interplay between anatomy and
functionality which result from both genetics as training effects, while it
also should be accounted for that different subtypes of dyslexics exhibit
different combinations of anatomy and functionality.

4.5. Conclusion

In summary, we report prediction accuracy of dyslexia using ma-
chine learning of anatomical scans in two samples. Various predictive
values showed that the anatomical classifier of this study is still far
away from use in clinical settings. However, the areas that contributed
to the classification of students with and without dyslexia contribute
to the understanding of brain anatomy in dyslexia. We concluded that
relations between brain anatomy and functionality are hard to interpret,
especially when considering effects of training and the existence of sub-
types of dyslexia. We furthermore concluded that not all symptoms of
dyslexia exist at the same cortical level of organisation, suggesting not
only that dyslexia is not a uniform syndrome, but also illustrating
that these multi-variate techniques can be used to arrange and
evaluate the symptoms that are believed to belong to a syndrome.
Findings in this and previous studies may give directions to further re-
search for suitable biomarkers in the future that can be used in a clinical
setting.
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